数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是 e?

查看全文
的时间越短,在战争中速度往往是决胜的关键。 经度的精确测量问题直到 18 世纪才得到有效解决,这归功于约翰·哈里森发明了高精度机械钟表。 在哈里森之前的数百年里,人们只能求助于天文学家来解决,因为天空就是人们最早、最精确的钟表,太阳、月亮、星星等天体就是上面的表针,读懂这个钟表,就可以知道时间和经度了。 天文学家观测天体,计算出运行的轨道,来预测未来几年每个时间点上天体所在的精确位置,英国天文学家以格林尼治天文台的时间为基准,再把时间和天体位置整理成详细的表格,公开出版发行。这套星表可不便宜,星表加上六分仪售价约 20 英镑,相当于现在 2 万人民币,即便这样也经常脱销。海上的人用六分仪测量天体,再去查那本高价天文表格,求得当地时间和格林尼治时间,知道两地的时间差,就知道现在的经度了。 16 世纪和 17 世纪之交,天文学家第谷和开普勒通过大量的观测,绘制了当时最精确的星图,解决了天文学家天文数据精度不足的难题。有了高精度的星图,全欧洲的数学家开始了天体轨道的计算竞赛,很多科学家也因此获得了商业和学术上的丰厚回报。那时的天文学家、数学家可不是像现代这么冷门,更像当今那些 IT、金融等热门行业里的精英一样,享受着人人羡慕的不菲高薪。 顺便说一下,日心说之所以能取代地心说,也是因为日心说模型更简洁,不仅计算起来更简单,而且预测非常准确,可以很好的解释行星逆行等现象,这是地心说完全做不到的。 即使这样,要想预测天体的运行,其计算也是极其繁琐和浩瀚的,在解决计算问题时,数学家们发明了大量崭新的数学理论和计算工具,包括对数、解析几何、微积分和牛顿力学等伟大的创新。可以说天文学是当时科学界最闪亮的宝石,是当时的高科技热门产业。 其中,对数的发明人就是約翰·納皮尔。 纳皮尔是天文学家、数学家,在计算轨道数据时,也被浩瀚的计算量所折磨。 "看起来在数学实践中,最麻烦的莫过于大数字的乘法、除法、开平方和开立方,计算起来特别费事又伤脑筋,于是我开始构思有什么巧妙好用的方法可以解决这些问题。" --约翰·纳皮尔,《奇妙的对数表的描述》(1614) 但纳皮尔不是一般人,不想像 IT 民工一样苦逼的重复劳动,于是用了 20 年的时间,进行了数百万次的计算,发明了对数和对数表,堪称学霸中的战斗机。 为了理解对数计算的优势,我们通过案例来说明,下面的表格里有两个数列: 第 1 行是自然数,他们是等差的; 第 2 行是 2 的倍数,他们是等比的; 要计算第 2 行的等比数列中任意两个数的乘积,例如 16*64; 先到第 1